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We study gravity interacting with a special kind of QCD-inspired nonlinear gauge field system which
earlier was shown to yield confinement-type effective potential (the “Cornell potential”) between charged
fermions (“quarks”) in flat space–time. We find new static spherically symmetric solutions generalizing
the usual Reissner–Nordström–de Sitter and Reissner–Nordström–anti-de Sitter black holes with the
following additional properties: (i) appearance of a constant radial electric field (in addition to the
Coulomb one); (ii) novel mechanism of dynamical generation of cosmological constant through the non-
Maxwell gauge field dynamics; (iii) appearance of confining-type effective potential in charged test
particle dynamics in the above black hole backgrounds.
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1. Introduction

It has been shown by ‘t Hooft [1] that in any effective quantum
theory, which is able to describe linear confinement phenomena,
the energy density of electrostatic field configurations should be
a linear function of the electric displacement field in the infrared
region due to appropriate infrared counterterms. The simplest way
to achieve this in Minkowski space–time is by considering a square
root of the field strength squared, in addition to the standard
Maxwell term, leading to a very peculiar non-Maxwell nonlinear
effective gauge field model [2]:

S =
∫

d4x L
(

F 2), L
(

F 2) = −1

4
F 2 − f

2

√
−F 2,

F 2 ≡ Fμν F μν, Fμν = ∂μ Aν − ∂ν Aμ, (1)

with f being a positive coupling constant. It has been shown in
first three references in [2] that the square root of the Maxwell
term naturally arises as a result of spontaneous breakdown of
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scale symmetry of the original scale-invariant Maxwell theory with
f appearing as an integration constant responsible for the latter
spontaneous breakdown. The model (1) produces a confining effec-
tive potential V (r) = −α

r + βr (Coulomb plus linear one) which is
of the form of the well-known “Cornell” potential [3] in quantum
chromodynamics (QCD). For static field configurations the model

(1) yields the following electric displacement field �D = �E − f√
2

�E
|�E| .

The pertinent energy density turns out to be (there is no contribu-
tion from the square-root term in (1)) 1

2
�E2 = 1

2 | �D|2 + f√
2
| �D|+ 1

4 f 2,

so that it indeed contains a term linear w.r.t. | �D|.
It is crucial to stress that the Lagrangian L(F 2) (1) contains

both the usual Maxwell term as well as a non-analytic function
of F 2 and thus it is a non-standard form of nonlinear electrody-
namics. In this way it is significantly different from the original
“square root” Lagrangian − f

2

√
F 2 first proposed by Nielsen and

Olesen [4] to describe string dynamics. Moreover, it is important
that the square-root term in (1) is in the “electrically” domi-
nated form (

√−F 2) as opposed to the “magnetically” dominated
Nielsen–Olesen form (

√
F 2).

Let us remark that one could start with the non-Abelian version
of the action (1). Since we will be interested in static spherically
symmetric solutions, the non-Abelian theory effectively reduces to
an Abelian one as pointed out in the first reference in [2].

Our main goal in the present Letter is to study possible new
effects by coupling the confining potential generating nonlinear
gauge field system (1) to gravity. We find:
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(i) appearance of a constant radial electric field (in addition to
the Coulomb one) in charged black holes within Reissner–
Nordström–de Sitter and/or Reissner–Nordström–anti-de Sitter
space–times as well as in electrically neutral black holes with
Schwarzschild–de Sitter and/or Schwarzschild–anti-de Sitter
geometry;

(ii) novel mechanism of dynamical generation of cosmological con-
stant through the non-Maxwell gauge field dynamics of the
nonlinear action L(F 2) (1);

(iii) appearance of confining-type effective potential in charged
test particle dynamics in the above black hole backgrounds.

2. Lagrangian formulation. Spherically symmetric solutions

We will consider the simplest coupling of the nonlinear gauge
field system (1) to gravity described by the action (we use units
with Newton constant G N = 1):

S =
∫

d4x
√−g

[
R(g)

16π
− 1

4
F 2 − f

2

√
−F 2

]
,

F 2 ≡ Fκλ Fμν gκμgλν, (2)

where R(g) is the scalar curvature of the space–time metric gμν

and g ≡ det‖gμν‖. It is important to stress that for the time being
we will not introduce any bare cosmological constant term.

The energy–momentum tensor T (F )
μν of the nonlinear gauge

field, which appears in the pertinent equations of motion:

Rμν − 1

2
gμν R = 8π T (F )

μν , (3)

∂ν

(√−g

(
1 − f√−F 2

)
Fκλgμκ gνλ

)
= 0, (4)

is explicitly given by:

T (F )
μν =

(
1 − f√−F 2

)
Fμκ Fνλgκλ − 1

4

(
F 2 + 2 f

√
−F 2

)
gμν. (5)

We will look for static spherically symmetric solutions of the sys-
tem (3)–(5):

ds2 = −A(r)dt2 + dr2

A(r)
+ r2(dθ2 + sin2 θ dϕ2), (6)

Fμν = 0 for (μ,ν) �= (0, r), F0r = F0r(r). (7)

In this case the gauge field equations of motion (4) become:

∂r

(
r2

(
F0r − εF f√

2

))
= 0, εF ≡ sign(F0r), (8)

whose solution reads:

F0r = εF f√
2

+ Q√
4πr2

, εF = sign(Q ). (9)

Again, as in the flat space–time case (1), the electric field contains
a radial constant piece εF f /

√
2 alongside with the Coulomb term.

Further, it has been shown in Ref. [5] that for static spherically
symmetric metrics (6) with the associated energy–momentum ten-
sor obeying the condition T 0

0 = T r
r , which is fulfilled in the present

case (7), it is sufficient to solve only one Einstein equation:

R0
0 = 8π

(
T 0

0 − 1

2
T λ

λ

)
where R0

0 = − 1

2r2
∂r

(
r2∂r A

)
. (10)

In the case under consideration the r.h.s. of the Einstein equa-
tion (10) with the energy–momentum tensor (5) becomes:

8π

(
T (F )0

0 − 1

2
T (F )λ

λ

)
= −4π

(
Q 2

4πr4
− 1

2
f 2

)
(11)

taking into account (7) and (9). Interestingly enough, there are no
cross terms in (11) between the Coulomb and constant electric
parts.

The solution of (10) with (11) yields:

A(r) = 1 − 2m

r
+ Q 2

r2
− 2π f 2

3
r2. (12)

In other words the solution given by (6), (12) and (9) describes
a black hole with:

• Reissner–Nordström–de Sitter space–time geometry (12);
• additional global constant radial electric field in (9) apart from

the usual Coulomb one;
• dynamically generated effective cosmological constant in (12)

(let us recall that there was no bare cosmological constant
in (2)):

Λeff = 2π f 2. (13)

In particular, when Q = 0 we obtain electrically neutral black
hole with Schwarzschild–de Sitter geometry:

A(r) = 1 − 2m

r
− 2π f 2

3
r2, (14)

where the cosmological constant (13) is dynamically generated, and
with additional global constant radial electric field:

F0r = εF f /
√

2. (15)

3. Bare negative cosmological constant versus induced
cosmological constant

Let us now introduce in (2) from the very beginning a negative
bare cosmological constant Λ = −|Λ|:

S =
∫

d4x
√−g

[
1

16π

(
R(g) − 2Λ

) − 1

4
F 2 − f

2

√
−F 2

]
. (16)

Then the corresponding static spherically symmetric solution is
given by (9) and (6) with:

A(r) = 1 − 2m

r
+ Q 2

r2
+ 1

3

(|Λ| − 2π f 2)r2. (17)

Thus, we find also black hole solution with Reissner–Nordström–
anti-de Sitter geometry (17) and with additional global constant
electric field (9) provided the full effective cosmological constant
(bare one plus dynamically induced one) satisfies:

Λeff = −|Λ| + 2π f 2 < 0, i.e. |Λ| > 2π f 2. (18)

On the other hand, if |Λ| < 2π f 2, i.e. Λeff = 2π f 2 − |Λ| > 0,
the solution (17) describes asymptotically de Sitter black hole in
spite of the presence of negative bare cosmological constant Λ. In
the special case |Λ| = 2π f 2 the dynamically induced cosmological
constant completely cancels the effect of the negative bare cosmo-
logical constant and the resulting solution describes an asymptoti-

cally flat Reissner–Nordström black hole (A(r) = 1− 2m
r + Q 2

r2 ) with
additional global constant radial electric field (15).

In particular, when Q = 0 the solution (17) reduces to electri-
cally neutral black hole with Schwarzschild–anti-de Sitter geome-
try for |Λ| > 2π f 2:

A(r) = 1 − 2m

r
+ 1

3

(|Λ| − 2π f 2)r2, (19)
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or electrically neutral black hole with Schwarzschild–de Sitter ge-
ometry for |Λ| < 2π f 2. In both cases above an additional global
constant radial electric field (15) is present.

In the special case |Λ| = 2π f 2 and Q = 0 we obtain asymptot-
ically flat Schwarzschild black hole (A(r) = 1 − 2m

r ) with additional
global constant radial electric field (15), i.e., Λeff = 0 in spite of the
presence of the negative bare cosmological constant in the gravity–
gauge-field action (16).

4. Charged test particle dynamics

Let us now briefly discuss the dynamics of a test particle with
mass m0 and electric charge q0 in the above black hole back-
grounds – (6) with (12) and (9) or (6) with (17) and (9). It is given
by the standard reparametrization invariant point–particle action:

Sparticle =
∫

dλ

[
1

2e
gμν(x)ẋμ ẋν − 1

2
em2

0 − q0 ẋμ Aμ(x)

]
, (20)

where e denotes the world-line “einbein”. The standard treatment,
using energy E and angular momentum J conservation in the
static spherically symmetric background under consideration and
replacing the arbitrary world-line parameter λ with the particle
proper-time parameter s via ds

dλ
= em0, yields the radial motion

equation:

(
dr

ds

)2

+ Veff(r) = E 2

m2
0

, (21)

Veff(r) ≡ A(r)

(
1 + J 2

m0r2

)
− q2

0

m2
0

r2
(

εF f√
2

− Q√
4πr2

)2

− 2
Eq0

m2
0

r

(
εF f√

2
− Q√

4πr2

)
, (22)

with A(r) as in (12) or (17).
Taking for simplicity Q = 0 (neutral black hole background) and

J = 0 (zero impact parameter – purely radial motion) the “effec-
tive” potential (22) becomes:

V(0)

eff (r) = 1 − 2m

r
+

(
1

3

(|Λ| − 2π f 2) − q2
0 f 2

2m2
0

)
r2

−
√

2Eq0εF f

m2
0

r. (23)

In a Schwarzschild–anti-de Sitter black hole (19) with constant ra-
dial electric field (15), for the special value of the ratio of the test
particle parameters q2

0/m2
0 = 2/3(|Λ|/ f 2 − 2π) the term quadratic

w.r.t. r in (23) vanishes and the latter acquires the form of a
QCD-like (“Cornell”-type [3]) confining-type potential (provided
q0εF < 0 with εF as in (8)):

V(0)

eff (r) = 1 − 2m

r
+

√
2E|q0| f

m2
0

r. (24)

Let us particularly stress that the “Cornell”-type confining po-
tential (24) for charged test particles is exclusively due to the
presence of the constant vacuum electric field (15) even though
Schwarzschild–anti-de Sitter is an electrically neutral background.

5. Discussion

It is possible to rewrite the action (2) in an explicitly Weyl-
conformally invariant form using the method of two volume forms
(two integration measures) [6] introduced earlier in the context

of gravity–matter models with primary applications in cosmol-
ogy. Namely, apart from the standard reparametrization covariant
integration density

√−g in terms of the intrinsic Riemannian met-
ric gμν as in (2), one introduces an alternative reparametrization
covariant integration density Φ(ϕ) in terms of auxiliary scalar
fields ϕ I (I = 1, . . . ,4):

Φ(ϕ) = 1

4!ε
κλμνεI J K L∂κϕ I∂λϕ

J ∂μϕK ∂νϕ
L . (25)

Then the following gravity–gauge-field action:

S =
∫

d4xΦ(ϕ)

[
gμν Rμν(Γ )

16π
− f

2

√
−F 2

]
− 1

4

∫
d4x

√−g F 2,

(26)

where Rμν(Γ ) is the Ricci tensor in the first order formalism (i.e.,
function of the affine connection Γ

μ
νλ), is explicitly invariant under

Weyl-conformal gauge transformations:

gμν → ρ(x)gμν, ϕ I → ϕ̄ I = ϕ̄ I (ϕ) such that

det

∥∥∥∥ ∂ϕ̄ I

∂ϕ J

∥∥∥∥ = ρ(x). (27)

The original action (2) arises as a special gauge-fixed version of
the Weyl-conformally invariant action (26) upon using the gauge
Φ(ϕ) = √−g .

To conclude let us recapitulate the main results in the present
Letter:

(a) the non-Maxwell gauge field dynamics of the nonlinear action
L(F 2) in curved space–time (2) produces dynamically a non-
zero positive cosmological constant;

(b) the coupled gravity–non-Maxwell-gauge-field system ((2) or
(16)) exhibits asymptotically de Sitter and asymptotically anti-
de Sitter static spherically symmetric (charged) black hole so-
lutions with an additional constant radial electric field (apart
from the Coulomb one);

(c) under certain choice of parameters we find a QCD-like confi-
ning-type effective potential in charged test particle dynamics
in the above black hole backgrounds.

Furthermore, one can prove the following inverse statement.
If we start with an action S = ∫

d4x
√−g(

R(g)
16π + L(F 2)) with

an a priori unknown gauge field Lagrangian L(F 2) and demand
that this theory will possess static spherically symmetric solutions
of Reissner–Nordström–de Sitter type, with dynamically generated
(via L(F 2)) cosmological constant, then we derive a unique solu-
tion L(F 2) = − 1

4 F 2 − f
2

√−F 2, which was our starting point in (2).
Going back to the non-linear gauge field equations (4) we ob-

serve that there exists a more general vacuum solution of the latter
without the assumption of staticity and spherical symmetry:

−F 2 = f 2 = const
(
recall F 2 ≡ Fκλ Fμν gκμgλν

)
, (28)

which via Eq. (5) automatically produces an effective positive cos-
mological constant:

T (F )
μν = − f 2

4
gμν, i.e. Λeff = 2π f 2. (29)

Thus, because of the absence of Coulomb field due to (28) and as-
suming absence of magnetic field, we obtain the above described
Schwarzschild–(anti)-de Sitter (19) or purely Schwarzschild solu-
tions with a vacuum electric field, which according to (28) has

constant magnitude |�E| =
√

− 1
2 F 2 = f√

2
but its orientation is com-

pletely arbitrary. In this disordered vacuum, where the electric
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field with constant magnitute does not point in one fixed direc-
tion, a test charged particle will not be able to get energy from the
electric field, instead, it will undergo a kind of Brownian motion,
therefore no Schwinger pair-creation mechanism will take place.

The present considerations may be extended to higher space–
time dimensions and thus provide a framework to study novel
effects that could appear relevant in the context of TeV gravity [7]
scenarios where non-trivial gauge field effects and gravity effects
may be of same order.

As a final comment we mention two other interesting phenom-
ena triggered by the gravity/non-linear-gauge-field system (2) in
the context of wormhole physics. First, Misner–Wheeler “charge
without charge” effect [8] is known to be one of the most inter-
esting physical phenomena produced by wormholes. Misner and
Wheeler realized that wormholes connecting two asymptotically
flat space–times provide the possibility of existence of electromag-
netically non-trivial solutions, where without being produced by any
charge source the flux of the electric field flows from one universe
to the other, thus giving the impression of being positively charged
in one universe and negatively charged in the other universe.

In an accompanying note [9] we found the opposite effect in
wormhole physics, namely, that a genuinely charged matter source
of gravity and electromagnetism may appear electrically neutral
to an external observer. We show in [9] that this phenomenon
takes place when coupling the gravity/gauge-field system (2)
self-consistently to a codimension-one charged lightlike brane
as a matter source. The “charge-hiding” effect occurs in a self-
consistent wormhole solution of the above coupled gravity/gauge-
field/lightlike-brane system which connects a non-compact “uni-
verse”, comprising the exterior region of Schwarzschild–de Sitter
black hole beyond the internal (Schwarzschild-type horizon), to
a Levi-Civita–Bertotti–Robinson-type “universe” with two compact-
ified dimensions (cf. [10]) via a wormhole “throat” occupied by
the charged lightlike brane. In this solution the whole electric flux
produced by the charged lightlike brane is expelled into the com-
pactified Levi-Civita–Bertotti–Robinson-type “universe” and, conse-
quently, the brane is detected as neutral by an observer in the
Schwarzschild–de Sitter “universe”.

The above “charge-hiding” solution can be further general-
ized to a truly charge-confining wormhole solution [11] when
we couple the gravity/gauge-field system (2) self-consistently to
two separate codimension-one charged lightlike branes with equal
but opposite charges. Namely, the latter system possesses a “two-
throat” wormhole solution where the “left-most” and the “right-
most” “universes” are two identical copies of the exterior re-
gion of the neutral Schwarzschild–de Sitter black hole beyond the
Schwarzschild horizon, whereas the “middle” “universe” is of gen-

eralized Levi-Civita–Bertotti–Robinson “tube-like” form with geom-
etry dS2 × S2 (dS2 being the two-dimensional de Sitter space).
It comprises the finite-extent intermediate region of dS2 between
its two horizons. Both “throats” are occupied by the two oppo-
sitely charged lightlike branes and the whole electric flux produced
by the latter is confined entirely within the middle finite-extent
“tube-like” “universe”.
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There is a missing second line in Eq. (10) which reads:

Rθ
θ = −8π T 0

0 where Rθ
θ = − 1

r2
(A − 1) − 1

r
∂r A.

There is a missing constant term “−√
8π |Q | f ” on the right-hand sides of Eqs. (12) and (17).

In the paragraph following Eq. (18) the expression “asymptotically flat Reissner–Nordström black hole (A(r) = 1 − 2m
r + Q 2

r2 )” must be

replaced by the expression “flat Reissner–Nordström-like black hole (A(r) = 1 − √
8π |Q | f − 2m

r + Q 2

r2 )”.
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